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Abnormalities in the brain connectivity in patients with neurodegenerative diseases, such

as early mild cognitive impairment (EMCI), have been widely reported. Current research

shows that the combination of multiple features of the threshold connectivity network

can improve the classification accuracy of diseases. However, in the construction of

the threshold connectivity network, the selection of the threshold is very important,

and an unreasonable setting can seriously affect the final classification results. Recent

neuroscience research suggests that the minimum spanning tree (MST) brain functional

network is helpful, as it avoids the methodological biases while comparing networks. In

this paper, by employing the multikernel method, we propose a framework to integrate

the multiple properties of the MST brain functional network for improving the classification

performance. Initially, the Kruskal algorithm was used to construct an unbiased MST

brain functional network. Subsequently, the vector kernel and graph kernel were used

to quantify the two different complementary properties of the network, such as the

local connectivity property and the topological property. Finally, the multikernel support

vector machine (SVM) was adopted to combine the two different kernels for EMCI

classification. We tested the performance of our proposed method for Alzheimer’s

Disease Neuroimaging Initiative (ANDI) datasets. The results showed that our method

achieved a significant performance improvement, with the classification accuracy of 85%.

The abnormal brain regions included the right hippocampus, left parahippocampal gyrus,

left posterior cingulate gyrus, middle temporal gyrus, and other regions that are known

to be important in the EMCI. Our results suggested that, combining the multiple features

of the MST brain functional connectivity offered a better classification performance in the

EMCI.

Keywords: minimum spanning tree, local property, topological structure, the multikernel SVM, early mild cognitive

impairment, classification
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INTRODUCTION

Alzheimer’s disease (AD) is a common progressive
neurodegenerative disease that affects the nervous system.
In 2018, the number of AD patients in the United States will
reach 5.7 million and the cost of treatments will reach 277 billion,
causing great economic losses to the families and the society
(Alzheimer’s Association, 2018). Therefore, in the early stage,
such as early mild cognitive impairment (EMCI), it is important
to find the symptoms of the disease and develop strategies to
treat it. However, the subtle differences in the cognitive function
between the EMCI and normal control (NC) make it difficult to
diagnose the EMCI. Therefore, it is very important to propose a
framework to identify the individuals with EMCI from NC.

At present, the brain functional magnetic resonance imaging
(fMRI) data is represented as a brain network composed of nodes
and edges (Lópezsanz et al., 2017). Through the analysis and
study of the brain network, the brain functional network of
the mild cognitive impairment (MCI) patients exhibit abnormal
local properties and topological structures (Supekar et al., 2008;
Sanz-Arigita et al., 2010; Petrella et al., 2011; Liu et al., 2012;
Wang et al., 2017; Yan et al., 2018). Jie et al. (2014b) constructed
an undirected functional brain network of NC and MCI, and
extracted the topological features to classify the two groups
of subjects, where abnormal regions were found in the brain
network including those in the hippocampus, amygdala, and the
inferior temporal gyrus. Khazaee et al. (2016) also constructed an
undirected brain network of NC, MCI, and AD groups by using
264 putative functional areas. Network topology attributes were
extracted as classification features to be used in the classification
of three groups of subjects. The result showed that this method
was able to accurately classify three groups (i.e., NC, MCI, and
AD) with an accuracy of 88.4%, and it was found that the left
posterior central gyrus, the right inferior temporal gyrus, the
left lingual gyrus, the right middle frontal gyrus, and the right
thalamus were significantly different from the normal elderly.
Wee et al. (2016) designed a disease identification framework
based on the estimated temporal networks, and analyzed the
group differences in the level network property. Yu et al.
(2016) studied the directed functional connectivity using the
Granger causality analysis (GCA), and found that the posterior
cingulate cortex (PCC) in the Default Mode Network (DMN)
showed directional disorders in receiving and transmitting
information.

A common problem in the above studies was the use of a single
type of network property for theMCI, and NC classification, such
as the local connectivity or global topological properties. In order
to improve the accuracy in the MCI diagnosis, Jie et al. (2014a)
extracted local connectivity and global topological properties
from five different threshold brain networks and combined these
properties in the classification of MCI and NC. However, this
may affect the final classification performance to some extent,
since we need to set a threshold for the original weighted network
in the construction of the threshold brain network. In 2015,
Tewarie et al. proposed the minimum spanning tree (MST) as
an unbiased approach in the construction and the analysis of the
brain networks (Tewarie et al., 2015). MST method preserves the

core framework of the networks while voiding the influences of
the threshold. It does not only reduce the computational cost,
but also guarantees the network’s neurological interpretability.
In 2006, Lee et al. applied the MST to brain network for the
first time, and MST was widely applied in the research and
development of many kinds of neuropsychiatric disorders (Lee
et al., 2006; Boersma et al., 2012; Demuru et al., 2013; Stam et al.,
2014).

Accordingly, in this paper, based on an unbiased MST
brain network, a classification framework combining the local
properties and topological structures is proposed. Figure 1

illustrates the framework of our proposed method. Initially,
the MST brain functional network was constructed, then the
local property and topological structure property of the MST
brain functional network were extracted, and the two features
were combined to identify the EMCI from the NC. Experiments
showed that the classification framework not only realized the
complementation of local and topological structure properties,
but also improved the classification performance.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The data used in this study was from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database at website http://adni.
loni.usc.edu/. A total of 60 subjects were selected from ADNI-2
database, including 32 EMCI patients and 28 NC. Table 1 shows
the demographics of all participants. A 3.0 T scanner (Philips
Medical Systems) was used to acquire resting-state BOLD fMRI
scans of all subjects. The scanning parameters were set as follows:
repetition time (TR) = 3,000ms; echo time (TE) = 30ms; slice
thickness= 3.3mm; flip angle= 80◦; slice number= 48 and 140
time points. During scanning, all the subjects were instructed to
keep their eyes closed.

Many preprocessing steps of the fMRI images were performed
using Data Processing Assistant for Resting-State fMRI
(DPARSF; Yan and Zang, 2010), Statistical Parametric Mapping
(SPM12; http://www.fil.ion.ucl.ac.uk/spm), and the Resting-State
fMRI Data Analysis Toolkit (REST 1.8) packages (Song et al.,
2011). Specifically, the first 10 time points of each subject
were removed; slice-timing correction and image realignment
were carried out on the remaining 130-time points. Because
the brain size, shape, orientation, and gyral anatomy of each
subject is different, the fMRI data of each subject was usually
normalized into the Montreal Neurological Institute (MNI)
space (resampled into 3 × 3 × 3 mm3 voxels) by using a unified
segmentation on the T1 image. Then, the linear trends of the
time courses were removed, and the effect of nuisance covariates
was removed by signal regression using the global signal, the
six motion parameters, the cerebrospinal fluid (CSF) and white
matter (WM) signals. Temporal filtering (0.01Hz < f < 0.08Hz)
was applied. Lastly, since we used only gray matter (GM)
tissue to construct the functional connectivity network,
the gray matter mask was used to mask the corresponding
fMRI images to eliminate the possible effects from CSF
and WM.
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FIGURE 1 | Framework of proposed method. Firstly, data preprocessing of fMRI; Then the MST brain functional network is constructed, the local property and

topological structure property of the MST brain functional network are extracted, Finally, the two features are combined to classify by using Multi-kernel SVM.

Methods
The key technologies in this paper included: Kruskal algorithm
(Kruskal, 1956), graph-based Substructure pattern mining
(gSpan; Yan and Han, 2002), the local feature selection, the
discriminative subgraph algorithm selection and the multikernel

learning technique (Zhang D. et al., 2011). Firstly, the unbiased
brain functional network was constructed using the Kruskal
algorithm, and betweenness was extracted as the local property.
Then, frequent subgraphs were mined from the brain network
using the gSpan algorithm, and the discriminative subgraphs of
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TABLE 1 | The demographics of all participants.

Group EMCI NC

No. of subjects (M/F) 17/15 11/17

Age (mean ± SD) 72.1 ± 6.0 74.3 ± 6.2

MMSE (mean ± SD) 27.7 ± 1.9 28.9 ± 1.3

CDR (mean ± SD) 0.48 ± 0.1 0 ± 0

EMCI, Early Mild Cognitive Impairment; NC, Normal Control; MMSE, Mini-Mental State

Examination; CDR, Clinical Dementia Rating; M, Male; F, Female.

brain networks were extracted as the topological property. Lastly
the local property and topological property were combined to
classify the EMCI.

Construction of the Unbiased MST Brain Functional

Network
The brain network can be abstracted into a graph. The
construction of the brain network involved the determination of
the nodes and edges in the graph. In this study, construction steps
of MST brain functional network included:

(1) Definition of node: We parcellated the gray-matter masked
voxels into 90 regions of interest (ROIs) by the Automated
Anatomical Labeling (AAL) template (Tzourio-Mazoyer
et al., 2002). A ROI is a node of the brain network. Therefore,
the brain network consisted of 90 nodes.

(2) Definition of edge: The average value of the fMRI time series
of all voxels in each ROI is considered as the average time
series of the node, and the Pearson correlation coefficient
between the pair of nodes is taken as the weight of the
connected edges. So, a functional full connected network is
constructed for each subject. Moreover, in order to extract
the meaningful network measures, we removed all negative
correlations from the obtained connectivity networks.

(3) Construction of unbiased brain functional network: In order
to construct an unbiased brain network, we used the Kruskal
algorithm to construct the MST brain network. MST is a
weighted graph that connects the nodes together, without
any cycles, and with the minimum weight. Since we were
only interested in the strongest connections in the brain
network, the Kruskal algorithm was used to construct
a weighted graph that connects all the nodes together,
without any cycles and with the maximum weight. The
algorithm sorted initially, all the correlation coefficients into
descending order, and then connected the edges with the
largest correlation coefficients that were added successively
until all nodes were connected in an acyclic subnetwork. In
this process, if the addition of a link formed a loop, this link
was ignored.

Local Property of the MST Brain Functional Network

Local property
Betweenness is an important local property in the MST, and
it was also recognized as the most relevant feature in the
classification between the MCI and the NC (Ebadi et al., 2017).

So betweenness was extracted as a feature. Betweenness of node
was defined as the number of all the shortest paths through
this node.

The betweenness bci of the node i was defined as (Tewarie
et al., 2015):

bci =
1

(n− 1)(n− 2)

∑

h, j ∈ V
h 6= j, h 6= i

ρi
hj

ρhj
(1)

Where ρhj represents the number of the shortest paths between

the node h and j; ρi
hj
represents the number of the shortest paths

between the node h and j through the node i; V represents the set
of nodes; and n represents the number of nodes.

Discriminative brain regions selection
We calculated the betweenness of each node in the MST
functional network. To select the most discriminative brain
region, two sample t-test was used. The brain regions with
p < 0.05 were selected as the discriminative brain regions.

Linear kernel
The betweenness of the discriminative brain regions composed a
feature vector representing the local property of a brain network.
We measured the similarity of two functional connectivity
networks in term of local property by using linear kernel as
follows:

kv
(

x, y
)

= xTy (2)

Where x and y represent the feature vectors from two subjects,
respectively.

Topological Property of Brain Network

Frequent subgraph mining
In order to capture the differences in the topological structure of
the brain networks, this study uses the gSpan algorithm to extract
the frequent subgraphs from the brain network, and the most
discriminative subgraphs were selected.

Definition 1 (Undirected labeled network): For an undirected
labeled network G = (V, E, L), V represents the set of nodes;
E ⊆ V × V , the set of edges; L, the set of labels.

Definition 2 (Subnetwork): Given two undirected labeled
networks G = (V, E, L) and Gs = (Vs,Es, Ls), if Vs ⊆ V , Ls ⊆

L and Es ⊆ E , Gs is a subnetwork of G.
Definition 3 (Subnetwork frequency): For a given network

set G, G = {G1,G2, · · ·Gn}, n is the number of networks. The
frequency fq of a subnetwork gs is defined in Equation (3):

fq
(

gs|G
)

=
|gs is subgraph of G and G ∈ G|

|G|
(3)

where |G| presents the number of networks.
Definition 4 (Frequent subnetwork mining): For a given

undirected labeled network set G and frequency thresholding
value s where 0 ≤ s ≤ 1, the process of finding all subnetworks
ofG with the frequency of at least s is called frequent subnetwork
mining.
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Discriminative subgraphs selection
In fact, there exist a large number of frequent subgraphs in a
network, but only a small portion of the frequent subgraphs
have the discriminability. Therefore, the most discriminative
subgraphs were selected by using the further feature selection
method based on their respective frequency difference (Wang
et al., 2015).

The frequency difference D(gs) of subgraph gs is defined in
Equation (4):

D
(

gs
)

=
∣

∣fq
(

gs|Gp
)

− fq
(

gs|Gn
)
∣

∣ (4)

Where Gp denotes the set of frequent subgraphs for positive
samples, and Gn denotes the set of frequent subgraphs for
negative samples.

The greater the frequency difference, the stronger is the
discriminability. The frequency difference of frequent subgraphs
were calculated and then the frequency difference threshold T
was set. The subgraphs with a frequency differences greater than
T were considered to be the most discriminative subgraphs.

Then, the brain network was reconstructed using the most
discriminative subgraphs. Specifically, for a network, we only
needed to delete the edges that did not appear in any
discriminative subgraphs. In this way, the topology of the brain
network and the discriminative subgraphs was preserved.

Graph kernel
The brain network is a complex structural dataset. The traditional
feature extraction methods cannot deal with the complex
topological features of the brain network. Graph kernel can map
data from the original graph space to the feature space, and
the similarity between the two graphs is further measured by
comparing the topological structure of the graph. Therefore,
the graph kernel establishes a bridge between the graph data
and many kernel-based learning algorithms, and has been
successfully applied in the fields of computer vision (Camps-Valls
et al., 2010) and bioinformatics (Zhang Y. et al., 2011).

Recent research has shown that the Weisfeiler-Lehman (WL)
subtree kernel (Shervashidze et al., 2011) could be efficiently
computed in time O(|E|), and was a suitable option for brain
graph classification (Vega-Pons et al., 2014). In this paper, we
have used the WL subtree-based kernel method to measure the
topological similarity between the brain networks. For a pair of
brain networks G andH, the basic processes ofWL subtree-based
kernels were as follows:

1) Initially, every vertex of a graph was labeled with a degree of
that node.

2) At each iteration, the label of each node was augmented in
the graph by a sorted set of node labels of neighboring nodes,
and these augmented labels were compressed into a new short
label.

3) This process proceeded iteratively until the node label sets of
two graphs differed, or the number of iteration reached the
maximum h.

4) The WL subtree-based kernel on two graphs G and H is
defined in Equation (5):

kg(G,H) =< ϕ (G) ,ϕ (H) > (5)

Where

ϕ (G) = (σ0 (G, s01) , · · · , σ0
(

G, s0|L0|
)

, · · · ,

σh (G, sh1) , · · · , σh
(

G, sh|Lh|
)

)

ϕ (H) = (σ0 (H, s01) , · · · , σ0
(

H, s0|L0|
)

, · · · ,

σh (H, sh1) , · · · , σh
(

H, sh|Lh|
)

)

σi
(

G, si,j
)

and σi
(

H, si,j
)

is the numbers of occurrences of the
label si,j in G and H, respectively, si,j denotes the label of i-th node
in iteration j. |Li | is the number of labels in the iteration i, Li
denotes the label set of G, and H in iteration i, L0 represents the
initial labels set of G and H. K is the kernel matrix of n × n, n is
the number of brain networks.

The Multikernel SVM
Recent studies on multikernel SVM has proved that the
multikernel integration not only improves the accuracy of
classification, but also improves the interpretability of the
results (Lanckriet et al., 2002). Neuroimaging studies have also
shown that multikernel integration can systematically aggregate
different kernels into a single mode (Wee et al., 2012).

In this paper, we consider two types of kernels, i.e., the linear
kernel and the graph kernel. We assumed that these kernels could
provide the complementary information for EMCI identification.

Firstly, as this research uses two different types of kernel,
normalization was done individually. Then we used a multi-
kernel SVM technique to linearly combine the two kernels, as
shown in Equation (6):

K (G, H) = βkv
(

x, y
)

+ (1− β) kg (G,H) (6)

Where G and H are two MST functional networks, kg (G,H) is a
graph kernel of G and H, x and y are their local feature vectors
of G and H, kv

(

x, y
)

is a linear kernel, andβ is a nonnegative
weighting parameter.

Once β was determined, we used the traditional single-kernel
SVM (Chang and Lin, 2011) for the classification.

Methodology
On the basis of pre-processing, Kruskal algorithm was used to
construct an unbiased brain network. The betweenness of the
node was extracted and the feature was selected from the training
set by using two sample t-test. In addition, the linear kernel
was adopted as the vector kernel. Then using gSpan algorithm
(s is set to 0.7), the frequency subgraphs of brain network was
mined and the most discriminative subgraphs (the frequency
differences >0.13) were selected. Subsequently, we used the
WL subtree kernel (h and n are set as 2 and 1, respectively)
to extract the topological features of the reconstructed brain
network, and, the optimal weighting parameter β was obtained
from the training set via a grid search (the range from 0 to 1
at a step size of 0.1). Finally, the conventional SVM framework
was used to identify the EMCI from NCs. All experiments are
performed using 10-fold cross-validation. Specially, the subject
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TABLE 2 | The abnormal brain region of local property.

Brain region Statistical significance

(P-value)

L.Middle frontal gyrus 0.037

R.Rolandic operculum 0.004

L.Supplementary motor area 0.048

L.Anterior cingulate and paracingulate gyri 0.043

L.Median cingulate and paracingulate gyri 0.024

L.Posterior cingulate gyrus 0.035

R.Thalamus 0.018

L.Middle temporal gyrus 0.039

R.Middle temporal gyrus 0.007

R.Inferior temporal gyrus 0.020

dataset was randomly divided into 10 parts, one of which was left
as the testing set, while the remaining nine were used as training
sets. The feature selection was carried out on the training set,
and the selected discriminative features were used to build the
classification model, then this model was used to classify on the
testing set. Ten-fold cross-validation was preformed 50 times.
Finally, we computed the arithmetic mean of the 50 repetitions
as the final result.

RESULTS

Discriminative Brain Regions and
Subgraphs
Betweenness of 90 nodes was calculated from the training
sets and two sample t-test was performed to evaluate its
discriminative power for identifying the EMCI from NC.
Betweenness of 90 nodes and p-value of two sample t-
test are shown in Supplemental Text S1. Table 2 lists the 10
discriminative regions (p < 0.05) that were selected based on
the betweenness. These discriminative regions were found to be
consistent with the previous findings.

On the other hand, we also extracted the most discriminative
subgraphs based on the global topological property of the
training sets. The frequent subgraphs were mined using the
gSpan from the MST functional connectivity network of EMCI
and NC, with frequency thresholding value of s = 0.7. We
obtained 20 frequent subgraphs for EMCI and 22 frequent
subgraphs for NC. Then we computed the frequency difference
of these subgraphs (Details refer to Supplemental Text S2.),
and selected only those subgraphs that exhibited a
frequency difference more than 0.13. Thus, we obtained 6
discriminative subgraphs that consisted of 12 abnormal regions.
Figure 2 shows the most discriminative subgraphs. Table 3

shows the 12 abnormal brain regions from the subgraph
feature.

Classification Performance
In this experiment, the MST was constructed, and the local
property and topological property were combined to identify
the EMCI from NC. The classification performance was

FIGURE 2 | The discriminative subgraphs of EMCI. ROL.R, R Rolandic

operculum; INS.R, R Insula; HIP.R, R Hippocampus; PHG.L, L

Parahippocampal gyrus; CAL.R, R Calcarine fissure and surrounding cortex;

CUN.L, L Cuneus; LING.R, R Lingual gyrus; SOG.L, L Superior occipital gyrus;

MOG.R, R Middle occipital gyrus; IOG.R, R Inferior occipital gyrus; SPG.R, R

Superior parietal gyrus; IPL.R, R Inferior parietal, but supramarginal and

angular gyri.

TABLE 3 | The abnormal brain regions of subgraph feature.

Brain region

R. Rolandic operculum

R. Insula

R. Calcarine fissure and surrounding cortex

L. Cuneus

R.Middle occipital gyrus

R.Inferior occipital gyrus

R. Superior parietal gyrus

R. Inferior parietal, but supramarginal and angular gyri

R. Lingual gyrus

L. Superior occipital gyrus

R. Hippocampus

L. Parahippocampal gyrus

TABLE 4 | The classification performances for different methods.

Feature ACC (%) SEN (%) SPE (%) AUC

LP 81.6 86.6 77.5 0.86

TP 61.7 73.3 54.5 0.59

Our method 85 90 79.2 0.88

ACC, classification accuracy; SEN, sensitivity; SPE, specificity; AUC, the area under the

receiver operating characteristic curve; LP represents only use local property as feature

to classify; TP represents only use topological property as feature to classify.

evaluated based on the accuracy, sensitivity, specificity, and area
under receiver operating characteristic (ROC) curve (AUC),
respectively.
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FIGURE 3 | The ROC curve of different methods. The ROC curve of different methods on EMCI vs. NC classification. LP represents the local property is used as

classification feature; TP represents the topological property is used as classification feature.

We compared our proposed method using solely the single
network property. Specifically, (1) For the local property, denoted
as LP, we computed the vector kernel based on the local property.
(2) For the topological property, denoted as TP, graph kernel was
only computed from the rebuilt networks. All experiments were
performed using a 10-fold cross-validation. The classification
performances for different methods are summarized in Table 4.
Figure 3 shows the ROC curves for these methods.

DISCUSSION

Discriminative Brain Regions
Many studies have suggested that the brains of MCI differ from
brains of NC in connectivity patterns, such as local properties
(Guo et al., 2017), and the topological properties of brain network
(Vega-Pons et al., 2014). We used two types of kernels to quantify
these two different properties.

On the one hand, the betweenness of the node was calculated
to quantize the local property. Then, two sample t-test was
used to extract the relevant property for classification. From
Table 2, we found that (1) compared with NC, the abnormal
regions were mainly concentrated in the Default Mode Network
(DMN), such as, L. Middle frontal gyrus, L. Anterior cingulate
and paracingulate gyri, L. Posterior cingulate gyrus, Middle
temporal gyrus, and R. Inferior temporal gyrus. This conclusion
is consistent with the view accepted by most researchers that
DMN was damaged in the early stages of AD (Garcés et al.,

TABLE 5 | The classification performance and the number of subgraphs under

the different parameter T.

T The number of

subgraphs

ACC (%) SEN (%) SPE (%)

0.06 14 83.3 83 83.2

0.07 13 83.3 87.1 80.83

0.08 12 83.3 87.5 77.5

0.09 8 83.3 82.2 79.7

0.1/0.11/0.12 7 81.6 89.3 80.6

0.13 6 85 90 79

T represents the frequency differences threshold; ACC, classification accuracy; SEN,

sensitivity; SPE, specificity.

2014; Montembeault et al., 2014; Knh et al., 2017). Similarly,
the low-frequency amplitudes of the AD patients were studied
and the brain regions were found to be consistent with our
study (Yetkin et al., 2006). For example, Liu et al. (2014) found
that the low frequency amplitude of AD patients in the bilateral
posterior cingulate gyrus, middle temporal gyrus and superior
temporal gyrus decreased when compared with the NC. (2)
The right Rolandic operculum, the left supplementary motor
area and the right thalamus also showed differences, which was
consistent with the related literature. Wang et al. (2011) found
that the low-frequency amplitude between AD and NC located
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in the bilateral supplementary motor area and the left fusiform
gyrus was different. Yetkin et al. (2006) confirmed that AD
was more active in the right middle frontal gyrus, left inferior
temporal gyrus, left thalamus, and right lenticular putamen
nucleus than the NC. Fei et al. (2014) showed the difference
of topological structures between the MCI, and NC were
mainly in left rolandic operculum, insula, left supplementary
motor area, left hippocampus, left parahippocampal gyrus, right
parahippocampal gyrus, and so on.

On the other hand, a graph kernel was calculated to measure
the similarity of the topological property. Figure 2 shows that
the brain connectivity network changed during EMCI, mainly
in the right Rlandic operculum, the right Insula, the right
hippocampus, the left parahippocampal gyrus, the right lingual
gyrus, the left superior occipital gyrus, the right Calcarine fissure
and surrounding cortex, the left cuneus, the rightmiddle occipital
gyrus, the right inferior occipital gyrus, the right superior parietal
gyrus, and the right inferior parietal. This suggests that the
hippocampus, parahippocampal gyrus, and the insula are the
first to be damaged in the early stage of AD, which is associated
with a decline in memory (Bai et al., 2009), attention, speech,

TABLE 6 | The classification performance and the running time under different

parameter h.

h ACC (%) SEN (%) SPE (%) Runtime(s)

2 85 90 79.2 0.41

4 83.3 84.2 75.5 0.58

6 85 89.1 80 0.76

8 83.3 85.5 70.7 0.97

10 81.7 86.7 77.5 1.11

h, the number of iteration; ACC, classification accuracy; SEN, sensitivity; SPE, specificity;

Runtime, the running time (second) of WL- subtree kernel.

and behavior in early AD patients. Specifically, the hippocampus
plays an important role in the spatial memory and in the
consolidation of information from short-term memory to long-
term memory. The hippocampus demonstrated a significantly
negative correlation to episodic memory performance (Bai et al.,
2009). The Parahippocampal gyrus plays an important role in the
encoding and recognition of environmental scenes (Machulda
et al., 2008).

Finally, it can be seen from Table 2 and Figure 2 that the local
property and topological property complement each other and
provide biomarkers for early diagnosis of MCI from both the
local and global aspects.

Classification Performance
A large number of studies have proved that the different
features (the local property, the topological property or multi-
property) of the traditional threshold network have obtained
better classification results. For example, Jie et al. (2014b)
constructed multiple threshold connectivity networks of NC
and MCI, and extracted the topological features from the
multiple threshold connectivity networks. Finally, the multi-
kernel SVM was used to classify the two groups of subjects.
Fei et al. (2014) had constructed threshold connectivity
networks of NC and MCI, and extracted frequent subgraphs,
and subsequently selected a discriminative subgraph as a
feature. Finally, SVM was used for the classification. These
researches show that the subgraph features can better capture
the topological information of brain network. Jie et al.
(2014a) extracted the local connectivity and global topological
properties from five different threshold brain networks and
combined these properties by using multikernel SVM for
the classification of the MCI and NC. It is shown that the
local and topological properties of multi-threshold connected
networks were complementary to each other, thus improving the
classification performance.

FIGURE 4 | The classification performance of different parameter β. The ordinate indicates accuracy, specificity and sensibility of this method, and the abscissa

denotes different parameter β. As shown in the figure, when β = 0.8, better classification performance was obtained, including that accuracy is 85%, and specificity is

90%, and then sensibility is 79.2%.
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The traditional threshold network construction method is
influenced by the threshold, which makes the brain network to
exhibit some deviation. In order to avoid these deviations, the
MST method was used to construct an unbiased brain network,
and this method exhibited a less computational cost, and at
the same time, retained the neurological interpretability of the
network.

In order to accurately compare the classification performance
of different features, we used the same data set, constructed
the MST brain network, and calculated the classification
performance of the local property, topological property and
multi-property feature respectively. Table 4 and Figure 3 showed
that our method in combination with the local and topological
properties based on MST brain functional network performed
significantly better than the single network property. Specifically,
for the classification of EMCI and NC, the proposed method
achieved 85% accuracy, 90% sensitivity, 79.2% specificity, and
0.88 AUC in the classification. These results show that the
proposed classification framework constructed an unbiased
brain functional network, captured and combined the local
and topological properties, and achieved better classification
performance. Compared with the traditional threshold method,
our method offered two advantages by avoiding the need to select
an optimal threshold, and by making the full use of local and
topological properties.

Effect of the Frequency Difference
Threshold T
A large number of frequent subgraphs were obtained by using
the gSpan module. In order to select the most discriminative
subgraphs, we computed the frequency differences of each
of the frequent subgraphs. Then frequent subgraphs with a
frequency difference greater than T were considered to be
the most discriminative subgraphs. In order to test the effect
of the frequency difference threshold (T) on the classification
performance, T (the range from 0.06 to 0.13 at a step size of
0.01) was tested separately in the experiment, and the results
are shown in the Table 5. The results showed that when T is
0.13, the number of subgraphs was 6, and the classification
performance was best. On analyzing six subgraphs, we found
that two of them were frequent subgraphs of the EMCI group
and the other four were frequent subgraphs of the NC group.
Additionally, we also found that the discriminative subgraphs
obtained by T = 0. 5 and T = 0. 13 were the same, and
they could be the only frequent subgraphs of EMCI or NC.
Thus, when T = 0.5, we can obtain the most discriminative
subgraphs. In future research, 0.5 can be used as a reference
value for T.

Effect of Parameter h
When performing a graph kernel calculation, the number of
iterations (h) needs to be set. In the subtree, h represents the
height of a subtree. The height of a subtree is the maximum
distance between the root and any other node in the subtree.
Different h values result in different values of graph kernels.
In order to test the effect of parameter h on classification
performance, h (h ∈ {2, 4, 6, 8, 10}) was tested separately in the

experiment, and the results are shown in the Table 6. The results
showed that when h = 2 or h = 6, the classification performance
was the best. But from the point of view of running time, when
h= 2, the running time was shorter.

Effect of Parameter β
We needed to find an optimal weighting parameter β in the
MKL method. In order to test the effect of weighting parameter
β on classification performance, β (the range from 0.1 to 0.9 at
a step size of 0.1) was tested separately in the experiment, and
the results are shown in Figure 4. It can be seen from Figure 4

that when β is 0.8 the best classification performance is obtained,
with 85% accuracy, 90% sensitivity, and 79.2% specificity. The
results indicate that the local property (i.e., betweenness) is
more important than the topological property of the MST brain
functional network for the classification.

Limitations of the Study
This study is limited by the following factors. First, during the
network construction, defining of the nodes is a critical step.
Previous studies have demonstrated that network nodes can
be defined using different brain atlases and image voxels, and
the constructed network exhibited different network properties
(Hayasaka and Laurienti, 2010). The impact of different brain
parcellation atlases on the classification performance will be
explored in the future. A second limitation is due to the small
amount of data used in the experiment, the results of the
classification lack a generality. This method will be applied to
larger AD dataset in future work.

CONCLUSION

In this paper, we proposed a classification framework based on
the MST brain functional connectivity network to identify the
EMCI patients and NC. The proposed method mainly used the
MST, vector kernel, graph kernel and the multikernel SVM.
Specifically, MST was used to construct the brain functional
connectivity network; vector kernel was used to extract local
property, graph kernel was used to extract global topological
property, and the multikernel SVM was adopted to fuse
these heterogeneous kernels for classification. In experiments
with the ADNI dataset, our proposed method not only
significantly improved the classification performance in terms
of accuracy, sensitivity, specificity, and AUC value, but also
potentially detected the ROIs that are sensitive in the disease
pathology.
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